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Strain localization is a central topic in geomechanics as it is often related to failure
and other important physical phenomena and geological processes.
This chapter is addressed to graduate students and researchers interested in an in-
troduction to strain localization analysis. We present fundamental notions that are
frequently met in this topic, such as loss of uniqueness, bifurcation, stability, ill-
posedness and mesh-size dependency.
We first show the inherent pathology of classical, Cauchy, rate-independent continua
that leads to mesh sensitivity and we present methods for alleviating/regularizing this
problem. These methods involve the use of theories that result in the introduction
of characteristic time and length scales into the system. We focus mainly on rate-
dependent constitutive laws, Micromorphic continua and multiphysics.
Regularization of strain localization is shown as general as possible using bifurca-
tion and stability analysis and without prescribing exact constitutive relations. One-
dimensional examples are then used to illustrate each regularization approach and
show in a mathematically simple manner the main results.

1 Introduction

Strain localization is an important phenomenon in geomechanics. From a geometrical
point of view, strain localization is related to the creation of (quasi-)periodic geomet-
rical patterns as in figure 1. From an engineering point of view strain localization is
related to failure. For instance, failure of a retaining wall happens through the local-
ization of strain at the slip surface. At a larger scale, landslides or even earthquakes



Figure 1: Network of quasi-periodic compaction bands (see paragraph 2.3 for defini-
tion) at Valley of Fire, Nevada, USA (date of photo: 25/12/2015).

occur due to localized, intense shear deformation in a narrow zone of millimetric to
centimetric scale.

In this chapter we give the fundamental tools for studying a) the conditions for which
strain localization takes place and b) its type. We focus mainly on deformation bands,
which are frequently observed in nature and in engineering applications. However,
the methodology that is developed can be applied for more complex patterns of strain
localization as is for example the checkerboard pattern shown in figure 2, diffusion
and/or run-away modes (e.g. [VS95, ND11, BSS17]).

The methodology we follow is based on bifurcation and stability theory of dynamical
systems. This theory gives a unified, general and rigorous mathematical framework
for studying strain localization in solids. It is worth emphasizing that, despite the var-
ious theoretical and mathematical complications related to constitutive modeling and
multiphysics couplings (see [LCBD09, Bow09] for some good references in contin-
uum mechanics and constitutive modeling), once the equations for the (dynamical)
system are established, bifurcation (and stability) analysis is a standard methodology.

In Section 2 we give the necessary definitions of common terms that are often found
in the literature when studying strain localization. We explain what is loss of unique-
ness, bifurcation, stability, ill-posedness and mesh-size dependency and we emphasize
their differences. We then focus on deformation bands, their various types and we dis-
cuss the necessary conditions for their triggering (onset of localization). Next we
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Figure 2: Checkerboard pattern of dilating and contacting cells in water-saturated
granular medium (source: [VS95])

.

use the first Lyapunov method in order to derive qualitative estimations regarding the
thickness of the deformation band and its evolution. Furthermore, we explain why in
rate-independent Cauchy continua strain localization occurs on a mathematical plane
(deformation band of zero thickness), which is a mathematical and physical artifact
when experimental evidence is taken into account. As a consequence we show why
mesh dependency takes place when the finite element method is used for solving strain
localization problems.

In order to overcome the aforementioned mathematical and numerical artifacts several
approaches have been proposed in the literature for regularization. Here we explore
the following three regularization techniques. First, we present rate-dependent Cauchy
continua (Section 3), their ability to regularize the problem and their limitations. Scale
analysis is performed showing the characteristic time scale that rate-dependent Cauchy
materials introduce to the strain localization problem. In this way we highlight the
physics and the interplay of viscous, inertia and rate-independent terms and we show
when each one of them is dominant. Second, in Section 4, we show the general class of
Micromorphic continua (e.g. strain gradient theory and Cosserat continuum [Ger73b,
Ger73a, CCM01, Var09]), which regularize the problem by introducing characteristic
lengths. Finally, going a step further from a pure mechanical description, we show in
Section 5 the effect of multiphysics couplings that insert both characteristic lengths
and time scales in the problem [Var96a, Var96b, Ben05]. It is needless to say that
the literature in each one of this topics is huge and can be classified material-wise,
application-wise and method-wise.
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Here we use simple one-dimensional examples in order to present the mathematical
developments in a simplified manner and to help understanding. These examples fol-
low after a general presentation of the regularization techniques in three-dimensions.
Index notation is used throughout this chapter as it is easier for handling the simple
case of Cauchy continua and of Micromorphic continua with or without multiphysics
couplings.

This chapter is addressed to graduate students and researchers interested in strain lo-
calization analysis and can be read in any order. Readers that want a synthesis of
the different regularization techniques are advised to follow the order of the sections.
Readers that prefer a “hands-on approach” are advised to start from the 1D examples
in each section and repeat the calculations.
After studying this chapter we hope that the you will be able to:

– Understand fundamental notions related to bifurcation theory;

– Perform a bifurcation analysis using the first Lyapunov method and derive the
conditions for strain localization under different constitutive assumptions and
continua;

– Identify the dominant time and spatial scales in a class of problems;

– Draw qualitative conclusions regarding strain localization zone thickness and
mesh-size dependency without cumbersome numerical analyses;

– Understand the added-value of Micromorphic continua such as the Cosserat and
strain-gradient continua;

– Investigate the effect of multiphysics couplings on the localization of deforma-
tions.

Updated versions of this chapter can be found at: http://coquake.eu/index.php/
tools/alert_2019/.

2 Strain localization

Strain localization is a phenomenon that is frequently met in (geo-)materials when
strain is localized into narrow zones of increased deformation. Instability, loss of
uniqueness, bifurcation, ill-posedness and mesh-size dependency are terms that are
frequently used in the literature (some times erroneously or as unwitting abuse of
language) to describe this phenomenon from a mathematical point of view. Before
studying strain localization in details and proposing various regularization strategies,
it is worth define the meaning of each term.
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2.1 Definitions

Loss of uniqueness, bifurcation and (in)stability are distinct, but related notions that
are frequently used to describe the behavior of physical systems.

Loss of uniqueness and bifurcation are associated with the existence of one or several
equilibrium states of a system. These equilibrium states are also called steady-states
can be periodic in time or time-independent. Of course, the system has to be non-
linear in order to have several equilibria and not just only one. They can depend also
on several parameters whose value can determine the existence and the number of this
equilibrium states. In this case, these parameters are called bifurcation parameters.
Examples of bifurcation parameters is the loading intensity, the constitutive parame-
ters of a material, geometry etc.

Besides the existence of one or several steady states for given values of the bifurcation
parameters, an equilibrium state may be stable or unstable. We say that an equilibrium
(or steady state) is stable when it returns or stays close to this equilibrium after a
small perturbation. An equilibrium is unstable when it is not stable. The notion of
stability is well established and mathematically rigorously defined in the original work
of Lyapunov [Lya92] in the end of 19th century. Stability is directly connected with
the time evolution of a system. This is in important point, because even if in common
practice time is neglected (e.g. quasi-static conditions), the transition from a steady-
state to another one happens in a certain time scale, which might be very short (sudden
failure of a brittle material) or very slow (geological phenomena).

According to the above, stability and bifurcation (or loss of uniqueness) are two dif-
ferent notions. However, bifurcation points are commonly accompanied with stability
change of the equilibrium states. This is illustrated in the following example. In
figure 3 we present a simple mechanical system consisted of a rigid bar attached to
a pivot point and a spring, and loaded with a load P . We choose the applied load
P as bifurcation parameter and we plot the angle θ at equilibrium as a function of
P . The space (θ∗, P ∗) is called (bifurcation) parameter space and the asterisk de-
notes equilibrium. Solid lines denote stable equilibrium states and dashed unstable
ones. Obviously this system has several equilibria. For instance, for P ∗ < −kl,
where l is the length of the bar, the system has two equilibrium states. The first one
is when the bar is at vertical upward position θ∗ = 0 and it is stable. The second
one is when the bar is vertical but downwards (θ∗ = π) and it is unstable. When
−kl < P ∗ < kl the system has three equilibrium positions, but all are unstable ex-
cept the one corresponding to θ∗ = 0. In this system there is no unique equilibrium
and therefore the term loss of uniqueness is of no use. However, if one linearizes the
system in the vicinity of the θ = 0, then the equilibrium branch for θ∗ = π disap-
pears. In this case (see figure 3) the system has a unique equilibrium point for θ∗ = 0,
which is lost at P ∗ = kl (loss of uniqueness at the bifurcation point B). For rigor-
ous mathematical definitions of bifurcation, loss of uniqueness and stability we refer
to [Lya92, BN69, CCV04, BH91b, BH91a, SA16]. Another, important term that is
common in the study of physical systems is ill-posedness. A mathematical system is
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Figure 3: Left: Spring-rigid bar mechanical system. Middle: Bifurcation diagram of
the spring-rigid bar system. B1 and B2 are bifurcation points. Right: Bifurcation
diagram of the linearized spring-rigid bar system in vicinity of θ = 0. The linearized
system has only one bifurcation point, B. Solid lines denote stable equilibrium and
dashed unstable ones.

said to be well-posed when:

– A solution exists;

– The solution is unique;

– The solution’s behavior changes continuously with the initial conditions.

This definition is given by Hadamard [Had02]. Problems that are not well-posed in
the sense of Hadamard are termed ill-posed. Hadamard believed that problems that
are physically important are both solvable and uniquely solvable. However, nowadays
we know that the many among the most important modern problems are not uniquely
solvable. Examples of very important ill-posed problems are found in all scientific
disciplines. Strain localization, inverse problems (e.g. seismic inversion), earthquake
nucleation, neural networks, population growth, weather and chaos are some problems
involving ill-posed mathematical equations among many others. Even the very simple
example given in figure 3 is ill-posed in the sense of Hadamard as multiple equilibria
(solutions) exist.

Ill-posed problems are though difficult to solve and these difficulties appear in differ-
ent forms depending on the application. For example, strain localization is connected
with mesh dependency in finite elements analyses. Mesh-size dependency means that
the stress-strain response of the system, as well as the strain localization thickness
(when interested in deformation bands, see below) depend on the size of the finite el-
ement discretization used for solving the problem and further refinement of the mesh
does not assure convergence to a unique solution. In order to remedy mesh-size de-
pendency and other undesired and nonphysical phenomena that are frequently met in
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ill-posed problems, regularization is needed.

A mathematical problem is regularized either ad-hoc by changing the mathematical
equations to alleviate undesired pathologies or by introducing more physics to the
problem at hand. The mathematical problem might still remain ill-posed, but it will
be free of nonphysical behaviors which are not confirmed by observations. Such an
example is the formation of shear bands in rate-independent granular materials. As it
will be shown below, modeling with the classical Cauchy continuum leads to the for-
mation of shear bands of zero thickness, which is contrary to experimental evidence.
Experiments show (e.g. [AHV+12]) that the shear band thickness is finite and equal
to some grain particles in size. Mühlhaus and Vardoulakis [MV87] regularized this
problem by introducing the missing integral lengths in the mathematical problem by
resorting to Cosserat theory (see section 4).

2.2 Instability of homogeneous deformation

The general PDEs of the problem are:

σij,j = ρüi, (1)

where σij is the Cauchy stress tensor, ρ is the density of the material, ui represents the
displacement at direction “i” and the double dot denotes the second time derivative
(acceleration). The indices take values 1, 2, 3 and Einstein summation convention
is used herein. Suppose a homogeneous, homogeneously deformed solid that is in
equilibrium:

σ∗ij,j = 0. (2)

We assume a perturbation, ũi from the reference, homogeneous solution, u∗i , such that
ũi = ui − u∗i . ũi = 0 at the part of the boundary where displacements are applied
and ũi,jnj = 0 where tractions are applied. We consider the class of materials whose
constitutive law can be written (linearized) as follows:

σ̃ij = Lijklε̃kl, (3)

where σ̃ij = σij − σ∗ij , ε̃ij = 1
2 (ũi,j + ũj,i) and Lijkl a fourth order tensor de-

pending on the constitutive behavior of the material at the reference state, where the
linearization is made. Injecting equation (3) into equation (1) we obtain:

Lijklũk,lj = ρ¨̃ui. (4)

The above PDE is linear and can be solved by separation of variables (or Fourier
transform). Setting ũi = X(xk)Ui(t), equation (4) becomes:

LijklX,ljUk = ρXÜi. (5)

The general solution of equation (5) in terms of Ui is Ui = Ui(t) = gke
st leading to:(

LijklX,lj − ρXs2δik
)
gk = 0, (6)

where δij is the Kronecker delta.
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2.3 Deformation bands

ni

ui

H

Figure 4: Schematic representation of homogeneous (left) and localized deformation
(right) in the form of a band. Blue indicates the initial undeformed state and orange
the final form. The loading is applied slowly in a quasistatic manner such as to always
satisfy equilibrium σ∗ij,j = 0. A bifurcation from the equilibrium state with homoge-
neous deformation to another equilibrium state of non-homogeneous deformation can
occur under the conditions of described by equation (8).

Figure 4 shows the formation of a deformation band. As explained below, shear, com-
paction and dilation bands are all deformation bands. The kinematics for the formation
of a deformation band determine the form of the perturbation ũi and consequently X ,
which has to be a planar wave propagating in direction ni, i.e. X(xk) = eiknixi .
k = 2π

λ is the wave number of the perturbation, λ its wavelength and i =
√
−1.

Therefore, the perturbation ũi takes the form:

ũi = gie
st+iknjxj (7)

and equation (6) becomes: (
Γik − ρc2δik

)
gk = 0, (8)

where Γik = njLijklnl is the so-called acoustic tensor, c = iλs2π is the propagation
velocity of the sinusoidal plane wave described by ũi = Uie

iknixi+st. The above con-
dition for strain localization coincides with the bifurcation conditions determined in
[RR75] (see also Appendix A) and takes the form of a classical eigenvalue problem.
The above eigenvalue problem has three eigenvalues q(i) corresponding to three eigen-
vectors {g(m)

k } (m = 1, 2, 3). Given the eigenvalues and solving for the propagation

velocity we get c(m) =
√

q(m)

ρ . The Lyapunov exponent is then s(m) = −i 2π
λ

√
q(m)

ρ .

If an s(m) with positive real part exists, i.e. Re(s(m)) > 0, then the homogeneous
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solution u∗i is unstable and the system bifurcates to a non-uniform solution, a defor-
mation band, with direction ni. Strain localization takes place. The type of the defor-
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shear band
contractant shear band
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p
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Figure 5: ni and gi for different types of deformation bands.

mation band (compaction, shear, dilation band) is determined by the product nigi. If
nigi = 0, the deformation is a shear band, if nigi = −1 a pure compaction band and if
nigi = +1 a pure dilation (extension) band. The intermediate states, −1 < nigi < 0
and 0 < nigi < +1 correspond to contractant and dilatant shear bands, respectively.
This is schematically shown in figure 5. More precisely, for an elastoplastic material
whose plastic behavior is a function of the first and second invariants of the stress
tensor (figure 6), it can be shown that under axisymmetric compression conditions of
loading, strain localization occurs when the hardening modulus becomes lower than a
critical value hcr for given values of friction coefficient µ and dilatancy β (see figure
7 and [IR00]).

Figure 6: Elastoplastic yield envelope with hardening/softening (dotted lines). Com-
pression is considered negative.
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Figure 7: Critical hardening values in function of friction coefficient µ and dilatancy
β for strain localization [IR00]. Notice that for non-associate plastic flow rule, local-
ization can occur even with hardening (hcr > 0).

2.4 Mesh-size dependency

With the exception of some special cases of constitutive laws that are out of the
scope of the present chapter, the acoustic tensor Γik does not depend on the (per-
turbation) wavelength, λ. Therefore, its eigenvalues, q(m) will not depend on λ ei-
ther. Consequently, the Lyapunov exponent s becomes maximum for decreasing λ

(s(m) = −i 2π
λ

√
q(m)

ρ ). In particular s→∞ for λ→ 0. This means that the dominant

perturbation in time is the one with the smallest wavelength (ũi = Uie
iknixi+st). In

other words the minor imperfection in size in the medium will grow faster and dom-
inate over the other imperfections of larger wavelength. This is why in the classical
Cauchy continuum, which has no internal lengths (the acoustic tensor Γik does not
depend on λ), the deformation band thickness is zero. This means that strain local-
ization takes place on a mathematical plane. The fact that the smallest perturbation
propagates faster justifies also mesh-size dependency in Finite Element calculations,
if one associates the mesh size with the characteristic wavelength of the perturbation.
For instance, in the frame of classical simulations in elastoplasticity of Cauchy rate-
independent continua with softening behavior (or even in perfect plasticity), the nu-
merically predicted shear band thickness depends on the finite element discretization
and on the element size (figure 8).

It is worth emphasizing that the above condition for strain localization‘is independent
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Figure 8: Shear band formation and mesh-size dependency for a rate-independent
elastoplastic, von Mises, Cauchy medium with strain softening. The shear band thick-
ness is always 1-2 elements thick and therefore mesh dependent. The plastic strains
and the global energy dissipation are also mesh dependent.

of the specific constitutive law, provided that the material is rate-independent and that
equation (3) can be written. Rate-dependent materials are treated in the next sec-
tion where a similar approach is followed for studying strain localization. The above
methodology is quite general and can be applied in many problems, including prob-
lems with multiphysical couplings, such as thermo-poro-chemo-mechanical couplings
(e.g. [Ste14, Sul15]). Moreover, even though a Cauchy (Boltzmann) continuum was
considered here, the same approach can be applied in Cosserat or even higher order
continua (e.g. [Müh88, Sul11]) as shown in the next Sections.

2.5 1D example

τ

H

u

y

Figure 9: Simple shear of an infinite layer.

In this paragraph we present a simple one dimensional example in order to illustrate
the above theoretical notions. We consider a layer that is sheared as shown in figure
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9. For the material of the layer we consider an elastoplastic constitutive behavior with
mechanical softening. The yield surface is defined as:

F = σ12 − τ0 ≤ 0, (9)

The strain increments are split in elastic and plastic parts as follows (small deforma-
tions):

ε̇ij = ε̇elij + ε̇plij . (10)

In a linear, elastic, isotropic Cauchy medium, the stresses are related to the elastic
deformations as follows:

σij = Kεelkkδij + 2G

(
εelij −

1

3
εelkkδij

)
, (11)

where K is the bulk modulus and G is the shear modulus. In this 1D example the
system is invariant in x1 and x3 directions and, therefore, the momentum balance
equations become:

∂σ12

∂x2
= ρü1;

∂σ22

∂x2
= ρü2. (12)

We assume that at steady state (equilibrium) we have homogeneous shear. In particu-
lar, σ12 = σ∗12 = τ0, σ22 = σ∗22 = σ0. This state will be stable as long as any pertur-
bation does not grow in time. By perturbing the displacement fields (ui = u∗i + ũi)
Equations (12) become:

∂σ̃12

∂x2
= ρ¨̃u1;

∂σ̃22

∂x2
= ρ¨̃u2. (13)

For elastoplasticity with mechanical softening (equation (9)):

σ̃12 = 2G
h

1 + h
ε̃12

σ̃22 = Mε̃22,

(14)

where M = K + 4G
3 is the p-wave elastic modulus and h = 1

G
dτ0
dq > −1 is the

hardening modulus, with q̇ = ε̇pl(12). h < 0 denotes softening.

The perturbations ũi have to fulfill the boundary conditions: σ̃12

(
x2 = ±H2

)
=

σ̃22

(
x2 = ±H2

)
= 0. H is the height of the sheared layer. Equations (13) and (14)

together with the above boundary conditions form a linear system, which admits solu-
tions of the form of Eqs.(7) with {ni} = {0, 1, 0}. Replacing into equations (13) and
solving for s as described in the previous sections, we obtain:

s = ikvp or (15)

s = ±ikvs

√
h

h+ 1
, (16)

where vp =
√

M
ρ is the p-wave velocity. The system is unstable when Re[s] > 0 or,

equivalently when h < 0 (softening). As expected, the growth coefficient s becomes
infinite for λ→ 0, which leads to mesh-size dependency.
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3 Viscous regularization - characteristic time

Materials whose mechanical response depends on the rate of deformation, as well
as on the deformation itself, are referred to as viscous or rate-dependent. The gen-
eral expression without considering path dependence reads σij = σij (εij , ε̇ij). The
linearized form of the constitutive law around a reference state of homogeneous de-
formation (see above) reads:

σ̃ij = Lijklε̃kl +Mijkl
˙̃εkl. (17)

Injecting in the balance equation we obtain:

Lijklũk,lj +Mijkl
˙̃uk,lj = ρ¨̃ui. (18)

Using separation of variables (or Fourier transform) we can solve the above linear
equation. Limiting our analysis to deformation bands, the perturbation field is given
by equation (7). The balance equation now becomes:

− njLijklnlk2gkXU − njMijklnlsk
2gkXU − ρs2gkXU = 0 (19)

and finally: [
njLijklnl + njMijklnls+ ρ

( s
k

)2

δik

]
gk = 0 (20)

Drawing a parallel to the acoustic tensor, a corresponding second order tensor can
be defined for the quantity njMijklnl. It should however be noted that there is a
difference in units. The parallel for the viscous response can then be introduced as
∆ik = njMijklnl leading to:(

Γik + ∆iks− ρc2δik
)
gk = 0. (21)

3.1 Scaling: Characteristic time and length

To determine the characteristic times, the following quantities are introduced

τ =
t

T
, χk =

xk
L
, (22)

where T is a characteristic time for the problem and L a characteristic length (e.g. the
height H of the sheared layer of figure 9. Introducing these quantities into equation
(21) and dividing by the shear modulus G yields:[

Γik
G

+
∆ik

GT
ŝ+

(
L

vsk̂T

)2

ŝ2δik

]
gk = 0, (23)

where vs is the shear-wave velocity, vs =
√

G
ρ , ŝ = sT and k̂ = kL.
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Case 1: Characteristic time due to viscosity

Let us assume that viscosity is dominant. In other words Γik

G and ∆ik

GT are terms of
O(1) and L2

v2s k̂
2T 2

of O(ε), ε� 1. We will determine the characteristic time Tvisc for

this case. ∆ik

GTvisc
= cik ≈ O(1) leads to:

Tvisc = cik
∆ik

G
. (24)

Moreover, by hypothesis L2

v2s k̂
2T 2
� 1 and therefore:

Tvisc �
L

vsk̂
⇒ cik

∆ik

G
� Lλ̂

vs2π
⇒

λ̂� 2πvs
cik∆ik

GL
≡ λ̂∗. (25)

In other words, when λ � λ∗ the inertia terms in equation (23) can be dropped,
resulting in: (

Γik
G

+
∆ik

G

ŝ

Tvisc
+ εŝ2δik

)
gk = 0⇒ (26)(

Γik
G

+ ciks

)
gk = 0. (27)

Assuming strain localization in an isotropic rock with G ≈ 30GPa, cij∆ij = η ≈
20MPas and vs ≈ 2000m/s, λ∗ ' 8m, which is much bigger than the localiza-
tion thickness in a deformation band that is of the order of some millimeters or even
smaller. Therefore, for typical applications, one would expect viscosity effects to be
dominant over inertial ones. This is also shown in the numerical examples in the next
paragraph.

Case 2: Characteristic time due to inertia

Suppose that inertia terms are dominant over viscosity. In this case Γik

G and L2

v2s k̂
2T 2

are terms of O(1) and ∆ik

GT of O(ε).

From L2

v2s k̂
2T 2
≈ O(1) it results that:

Tiner =
L

vsk̂
=

λ̂L

2πvs
. (28)

∆ik

GT � 1 yields:

cik
∆ik

G
� Tiner =

λ̂L

2πvs
⇒

14



λ̂� λ̂∗ = 2πvs
cik∆ik

GL
. (29)

Equation (29) means that for very large wave lengths, inertia effects are dominant to
viscosity and the second term of equation (23) can be dropped:(

Γik
G

+ s2δik

)
gk = 0. (30)

Based on the above scalings one -practically- characteristic length, λ∗, was identified
and two time scales Tvisc and Tiner. However, there is one more length scale that
could be identified.

Case 3: Time scale of negligible rate-independent terms

Of interest is the third and final combination, where both viscosity and inertia are
dominant over rate-independent behavior.

We assume a new time-scale, such that τv&i = ε−aτ . This leads to:[
εaΓik
G

+
∆ik

GT
ŝ+ ε−a

(
L

vsk̂T

)2

ŝ2δik

]
gk = 0 (31)

Assuming ε−a
(

L
vsk̂T

)2

and ∆ik

GT are terms of O(1) and εa Γik

G of O(ε) with ε � 1

we obtain that a = 1, T = Tvisc and ε = L2

v2s k̂
2T 2

=
T 2
inertia

T 2
visc

. Therefore we get:(
εΓik
G

+ cikŝ+ ŝ2δik

)
gk = 0⇒ (32)

(
cikŝ+ ŝ2δik

)
gk = 0 (33)

and

Tv&i = εTvisc =
T 2
iner

Tvisc
< Tinner < Tvisc (34)

Which time scale is more important than the others, depends on the application at hand
(e.g. loading conditions, material parameters, localization thickness, imperfections
etc.). For a given application, the above scaling laws can considerably simplify the
calculations and give physical insight to the results.

3.2 Effects of viscosity and inertia

In one dimension equation (21) reduces to:

Γ + ∆s+
ρ

k2
s2 = 0. (35)
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The question to be answered is for which value of k does s receive its maximum value.
The solution to the above equation for Γ = 0 is s = 0 for any value of k and

s = −∆k2

ρ
(36)

is negative for any value of k other than 0, which corresponds to an infinite wave-
length.
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(a) α̂=0.1.

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

s

(b) ∆̂=0.1.

Figure 10: s versus λ for different values of α̂ and ∆̂.

If Γ is not equal to zero, there is no loss in generality in dividing by Γ. Substituting in
λ = 2π/k then yields:

− 1 +
∆

Γ
s+

ρλ2

4π2Γ
s2 = 0⇒ (37)

− 1 + ∆̂s+ α̂λ2s2 = 0. (38)

The solutions to the above quadratic equation are:

s1,2 =
−∆̂±

√
∆̂2 + 4α̂λ2

2α̂λ2
. (39)

Of the two solutions only the one, corresponding to the plus sign, has a positive real
part. This is plotted in figure 10 for different values of the quantities ∆̂ and α̂. It
can be observed that the maximum value of s corresponds in all cases to λ = 0. In
contrast to what was discussed in section 2.4 for the case without any regularization,
the maximum value of s is now finite and in fact equal to 1/∆̂. This is illustrated in
figure 10a.

It can be further observed that larger values of inertia, represented by the term α̂,
correspond to a more rapid decrease in the value of s with increasing values of α.
This is particularly easy to note in figure 10b.
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Figure 11: s versus λ for different negative values of ∆̂ and for α̂=0.1.

Up to this point it has been tacitly assumed that the contribution of the viscosity has
been positive, in the sense that the material exhibits strain rate hardening, rather than
strain rate softening. This is the case when the eigenvalues of ∆ij in two- or three-
dimensions or the value of ∆̂ in one dimension are positive. It is however also possible
that a material may exhibit strain rate softening. For the one dimensional case its effect
is illustrated in figure 11. As may be observed, the maximum value of the growth
coefficient s goes to infinity as λ→ 0 and in fact does so faster than in the case of the
Cauchy continuum.

3.3 1D Example

The example considered in section 2.5 is revisited here, incorporating a viscous ma-
terial response. The sheared layer of figure 9 is considered. The material response is
assumed to be elasto-viscoplastic with the yield function given in equation (9) and the
elastic response given in equation (11). The strain increments are split in elastic and
viscoplastic parts as follows (small deformations):

ε̇ij = ε̇elij + ε̇vplij . (40)

with the viscoplastic strain increments described by a Perzyna type model [Per66]:

ε̇vpij = λ̇
∂F

∂σij
=

F

ηf0

∂F

∂σij
, (41)

where η is a constant with units of time, indirectly expressing viscosity, and f0 is a
constant with units of stress, commonly the initial value of the material parameter τ0.
The balance equations are the same as in equations (12) and (13) for the unperturbed
and the perturbed states respectively.

From the definition of the plastic multiplier λ̇ in equation (40) it results that:

Ḟ = ηf0λ̈⇒ (42)
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σ̇12 = 2G
h

1 + h
ε̇12 +

ηf0

1 + h
λ̈. (43)

From the definition of the viscoplastic strain and the form of the yield function it
results that λ̈ = ε̈vp12 . Moreover, the first time derivative can be substituted with a
perturbation by considering time integration and successive perturbation. The result
reads:

σ̃12 = 2G
h

1 + h
ε̃12 + 2

ηf0

1 + h
˙̃εvp12 ⇒ (44)

σ̃12 = 2G
h

1 + h
ε̃12 + 2

ηf0

1 + h
˙̃ε12 −

ηf0

G(1 + h)
˙̃σ12. (45)

Making use of equation (43) in equation (45) in the form of successive substitutions
yields

σ̃12 = 2G
h

1 + h
ε̃12+2

ηf0

(1 + h)2
˙̃ε12−2

(ηf0)2

G(1 + h)3
¨̃ε12+2

(ηf0)3

G2(1 + h)4

...
ε̃ 12−. . . (46)

It can be observed that the above is an infinite series with alternating sign of coeffi-
cients. The coefficients follow a geometric progress where the multiplier is equal to
ηf0

G(1+h) . To maintain an analogy to equation (17) only the first two terms on the right
hand side of the equation are retained. On the whole the constitutive law now reads:

σ̃12 = 2G
h

1 + h
ε̃12 + 2

ηf0

(1 + h)2
˙̃ε12

σ̃22 = Mε̃22,

(47)

where, again, M = K + 4G
3 is the p-wave elastic modulus and h = 1

G
dτ0
dq > −1 is

the hardening modulus.

Following the analysis presented in section 2.5 from the first balance equation we
obtain:

G
h

1 + h
k2 +

ηf0

(1 + h)2
k2s+ ρs2 = 0⇒ (48)

v2
s

h

1 + h
k2 + v2

s

ηf0

G(1 + h)2
k2s+ s2 = 0 (49)

Solving for s yields:

s = −1

2
v2
s

ηf0

G(1 + h)2
k2 ± 1

2

√(
v2
s

ηf0

G(1 + h)2
k2

)2

− 4v2
s

h

1 + h
k2. (50)

On the whole, from both balance equations we obtain:

s = ikvp or (51)

s = −v2
s

ηf0

2G(1 + h)2
k2 ±

√(
v2
s

ηf0

2G(1 + h)2
k2

)2

− v2
s

h

1 + h
k2, (52)
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Figure 12: Growth coefficient in function of the perturbation wavelength. Contrary to
Cauchy continuum, the maximum value of the growth coefficient is finite.

where vp =
√

M
ρ is the p-wave velocity and vs =

√
G
ρ is the s-wave velocity. The

system is unstable when Re[s] > 0 and it reduces to the solution given in section 2.5
when η = 0.

A comparison to the Cauchy continuum is presented in figure 12. For η 6= 0, we
observe that the growth coefficient s becomes maximum for λ = 0, but non infi-
nite as in the case of rate-independent materials. In other words the presence of a
characteristic time due to viscosity limits the growth coefficient and consequently per-
turbations propagate in finite time. Moreover, in the absence of inertia (or if it is
very small, see scaling, paragraph 3.1) the growth coefficient is finite and indepen-
dent of the wave length of the perturbation (see figure 10 for α̂). The consequence of
this latter observation is that in numerical analyses the results are mesh-independent
[Nee88, WSD96]. However, they depend on existing perturbations related to the ma-
terial parameters (e.g. imperfections) or the loading conditions which might favor one
wave-length or another.

4 Micromorphic continua regularization -
characteristic lengths

The theory of Micromorphic continua is a general continuum theory that can repre-
sent various heterogeneous systems with microstructure of non-negligible size and
take into account various length and time scales (internal lengths) that the classical
Cauchy continuum fails to represent. The various features of the Micromorphic con-
tinuum theory were studied by many researchers in the past, showing several advan-
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tages compared to the classical continuum approach. Intrinsic wave dispersion, non-
singular fields in fracture mechanics, interesting properties related to the design of
metamaterials, are some of the applications that emerge from the deep study of these
continua. Regularization in strain localization problems is another feature of these
continua due to the characteristic lengths they embody.

According to Germain [Ger73b] the Cauchy continuum is a continuous distribution of
particles, each of them being represented geometrically by a point and characterized
kinematically by a velocity Vi. In a theory that takes microstructure into account each
particle has kinematic properties that are defined in a more detailed way.

At the microscopic level of observation, a particle appears itself as a continuum P (M)
of small extent. Let M be the center of mass of the particle P (M), M ′ a point
of P (M), ui the displacement of M (Vi its velocity), x′i the coordinates of M ′ in
a Cartesian frame parallel to the given, global frame and M its origin, u′i the dis-
placement of M ′ with respect to the given frame (V ′i its displacement) and xi the
coordinates of M in the given frame (see figure 13). D denotes the control volume.
As P (M) is of small extent, it is natural to look at the asymptotic expansion of V ′i
with respect to x′i:

u′i = ui + χijx
′
j + χijkx

′
jx
′
k + χijklx

′
jx
′
kx
′
l + . . . , (53)

where χij is a micro-deformation tensor, which expresses the gradient of the rela-
tive displacements u′i and χij...m are higher order micro-deformation rate tensors. In
three-dimensions: i, j, . . . ,m = 1, 2, 3. The tensors χij...m are assumed to be fully
symmetric with respect to the indices j, . . . ,m.

M

M′

iX

ix′

iV′

C
iV

( )P M

D

Figure 13: Continuum with microstructure.

Applying the principle of virtual power and using the divergence theorem (see [Ger73b]
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and [Ste18] for more details on derivation), we obtain:

τij,j + fi = 0, ti = τijnj

νijk,k + sij + ψij = 0, µij = νijknk

νijkl,l + sijk + ψijk = 0, µijk = νijklnl

. . . ,

(54)

where, again, ni is the outward pointing unit normal vector field of the boundary of
the solid. The above system of equations represents the equilibrium equations of a
Micromorphic continuum of order n (strong form).

The additional degrees of freedom of Micromorphic continua introduce microinertia
terms, whose presence leads to interesting wave dispersion properties, especially at
short wavelengths (optic branch) [SSV10] and finite Lyapunov exponents in localiza-
tion problems [SSV11].

In figure 14 we outline the various higher order (Micromorphic) continuum theories
and their special cases. Besides the classical continuum and the Cosserat continuum
(called also micropolar continuum, see [Var09]), a special case of Micromorphic con-
tinuum is also the second gradient and the indeterminate couple stress theory (called
also restrained Cosserat medium).

Figure 14: Higher order continuum theories according to Germain’s terminology
[Ger73b]; see also [Min64, Eri99].
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Retrieving the classical, Boltzmann continua, is straightforward by setting χij and the
higher order microdeformation rate tensors null. In this case, sij = 0 and τij = σij ,
i.e. equal to the Cauchy stress tensor, which is symmetric.

In the case that the particle P (M) is deformable and its microdeformation coin-
cides with the deformation of the (macro-)continuum, i.e. χij = Vi,j , we obtain
the so-called second gradient continuum theory. As in this case the microdeforma-
tion rate tensor is no more an independent generalized virtual velocity, one has to
start from the very beginning and apply the principle of virtual power for deriving the
strong form of the equilibrium equations and the appropriate boundary conditions. For
more details we refer to [Ger73b] and for some interesting applications of the theory
to [DSMP93, CCE98, ZPV01, CCC06, SDC07, KABC08, PZ16, DAD+17], among
others. Alternatively, second gradient continua can be derived by assuming that the
internal energy depends explicitly on the second gradient of the displacement field
[Ger73a, Min65]. As fat it concerns strain localization, second gradient continuum
leads to deformation bands of finite thickness and remedies mesh dependency in finite
element analyses. For a more detailed study of second gradient theories related to
strain localization we refer to [CCM01, CCC06].

4.1 Cosserat continuum

The derivation of the Cosserat continuum is more direct than the second gradient. The
basic assumption is that the particle P (M) behaves as a rigid body and so it can not
only translate, but also rotate. In this case the microdeformation rate tensor has to be
anti-symmetric and the rest higher-order microdeformation tensors zero.

Adding inertia effects and neglecting volumic forces, equilibrium equations (equations
(54)) become:

τij,j + fi = ρüi, ti = τijnj

mij,j − εijkτjk + ψi = Iω̈ci , µi = mijnj .
(55)

This is the strong form of the Cosserat continuum equations. τij is the Cosserat stress
tensor, which is not symmetric and mij is the Cosserat moment (couple stress) tensor.
εijk is the Levi-Civita symbol. fi and ψi are respectively volumic (body) forces and
moments and ui and ωci are respectively the Cosserat displacements and rotations. ti
and µi denote boundary tractions and I is the microinertia.

A constitutive law connects the generalized stresses τij and mij with the generalized
deformations γij and κij :

γij =ui,j + εijkω
c
k

κij =ωci,j ,
(56)

i.e. τij = τij(γij , κij) and mij = mij(γij , κij). We assume an equilibrium state
of homogeneous deformation and search for the conditions where this state becomes
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unstable leading to the formation of a deformation band. To this extend, we perturb
the kinematic fields ui and ωi as follows:

ũi =ui − u∗i = Uie
st+iknjxj

ω̃ci =ωci − ωc∗i = Ωie
st+iknjxj .

(57)

Linearization of the constitutive law yields (see [RSS18] for an application in elasto-
plasticity):

τ̃ij =CTTijklγ̃kl + CTMijkl κ̃kl

m̃ij =CMT
ijkl γ̃kl + CMM

ijkl κ̃kl.
(58)

Notice that κij has units of deformation over length. Consequently, any ratio of the
various tensors CXX produces a characteristic length for the problem at hand. In-
serting equations (57) and equations (58) into equations (55) we obtain the following
system of algebraic equations:[

Γik + ρ
(
s
k

)2
δik ∆ik

Ξik Πik + I
(
s
k

)2
δik

] [
Uk
Ωk

]
= 0, (59)

where

Γik = njC
TT
ijklnl (60)

∆ik = −i
1

k
njeqlkC

TT
ijql + njC

TM
ijkl nl (61)

Ξik = njC
MT
ijkl nl + i

1

k
eijrC

TT
jrkqnq (62)

Πik = njC
MM
ijkl nl − i

1

k
ernkC

MT
ilrnnl +

1

k2
eilrC

TT
lrnqenqk + i

1

k
eilrC

TM
lrkqnq. (63)

The strain localization condition for deformation bands in the framework of Cosserat
continuum is:

Det

([
Γik − ρc2δik ∆ik

Ξik Πik − Ic2δik

])
= 0. (64)

The singularity of the above tensor is similar to the condition found in [IW98, SW91]
for the onset of localization (s = 0). In these papers, the authors derive the localiza-
tion condition from the kinematic and static compatibility conditions across the shear
band as done classically for strain localization analysis [MV87, VS95]. Note that
if no Cosserat effects are considered the classical condition of localization for rate-
independent materials with a Cauchy continuum is retrieved, i.e. Det(njC

TT
ijklnl) = 0.

For more details we refer to [RSS18].

4.2 1D example of regularization with Cosserat continuum

An elastoplastic constitutive behavior with mechanical softening is considered in this
example. More advanced Cosserat constitutive models such as the Mühlhaus-Vardoulakis
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Cosserat plasticity model [MV87, VS95, RSS18] might be used, but the advantage of
this simple and unrealistic for granular material models is that analytical derivations
can be performed easily. The yield surface is defined as:

F = τ(12) − τ0 ≤ 0, (65)

where τ(ij) denotes the symmetric part of the stress tensor τij . The strains and curva-
tures of the Cosserat medium are split in elastic and plastic parts as follows:

γ̇ij = γ̇elij + γ̇plij

κ̇ij = κ̇elij + κ̇plij .
(66)

In a centrosymmetric, linear elastic isotropic Cosserat medium, the stresses are related
to the generalized elastic deformation measures according to the following constitutive
relations [Var09]:

τij = Kγelkkδij + 2G

(
γel(ij) −

1

3
γelkkδij

)
+ 2η1Gγ

el
[ij]

mij = 4GR2
(
κel(ij) + η2κ

el
kkδij

)
+ 4η3GR

2κel[ij],

(67)

where η1, η2, η3 are positive material constants and R is an internal length parame-
ter, which for a granular material can be identified with the mean radius of the grains
of the Representative Volume Element (RVE). For more details on homogenization
approaches tailored to Cosserat continuum and upscaling, both in elasticity and plas-
ticity, the reader is referred to [BV01, GSSS16, RC16]. γ(ij) and γ[ij] denote respec-
tively the symmetric and anti-symmetric parts of γij . The Cosserat shear modulus,
which expresses the stiffness related to the relative rotation of the particle (e.g. of a
grain) with respect to the macro-rotation of the continuum (e.g. of the assemblage of
grains) is defined as Gc = η1G. In this 1D example the system is invariant in x1 and
x3 directions and, therefore, the momentum balance equations become:

∂τ12

∂x2
= ρü1;

∂τ22

∂x2
= ρü2

∂m32

∂x2
+ τ21 − τ12 = Iω̈c3.

(68)

At steady state we have a Cauchy continuum under homogeneous shear. In particular,
τ(12) = τ∗(12) = τ0, τ22 = τ∗22 = σ0, τ[12] = τ∗[12] = 0 and m32 = m∗32 = 0. This
state will be stable as long as any perturbation does not grow in time. By perturbing
the displacement and the rotation fields at steady state (ui = u∗i + ũi, ω3 = ωc∗3 + ω̃c3)
equations (68) yield:

∂τ̃12

∂x2
= ρ¨̃u1;

∂τ̃22

∂x2
= ρ¨̃u2

∂m̃32

∂x2
+ τ̃21 − τ̃12 = I ¨̃ωc3.

(69)
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For elastoplasticity with mechanical softening (equation (65)):

τ̃(12) = 2G
h

1 + h
γ̃(12)

τ̃[12] = 2Gcγ̃[12]

τ̃22 = Mγ̃22

m̃32 = 4GR2κ̃32.

(70)

The perturbations ũi and ω̃c3 have to fulfill the boundary conditions: σ̃12

(
x2 = ±H2

)
=

σ̃22

(
x2 = ±H2

)
= m̃32

(
x2 = ±H2

)
= 0. H is the height of the sheared layer. Equa-

tions (69) and (70) together with the above boundary conditions form a linear system
which admits solutions of the form of equations (57) with {ni} = {0, 1, 0}. Replacing
into equations (69) and solving for s as described in the previous sections, we obtain:

s = ikvp or (71)

s = ±ikvs

√
h

h+ 1

√
η1

(
1 + 1

k2R2

)
+ h+1

h
η1
k2R2 + 1

, (72)

where I was taken equal to zero for simplicity. The system is unstable whenRe[s] > 0
or, equivalently when h < 0 (softening) and η1

(
1 + 1

k2R2

)
+ h+1

h > 0. The latter
condition leads to a critical wavelength λcr:

λ > λcr = 2πR

√
−1 + h

h
− 1

η1
. (73)

The wavelength of the perturbation has to be larger than this critical value for local-
ization to occur. Notice that λcr is proportional to the Cosserat internal length, R. If
R → 0 we retrieve the same condition for strain localization with the 1D example
presented in paragraph 2.5 for a Cauchy continnum (see figure 15).

5 Regularization and multiphysics couplings -
characteristic length/time

It is often the case that the mechanical response of a given material depends on other
physical or chemical processes taking place. Such processes can in turn be influenced
by the mechanical response of the material to the changing conditions and to the load,
leading for example to changes in porosity or internal structure and producing heat
through internal friction. If that is the case one speaks of multi-physical couplings.
The processes most commonly taken into account are hydraulic, thermal or chemical.

Materials whose mechanical response depends on a number of additional physical
quantities θi, i = 1, . . . , N , as well as on the deformation, obey the following general
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Figure 15: Growth coefficient in function of the perturbation wavelength. Contrary
to Cauchy continuum, strain localization is not possible for λ < λcr in the case of
Cosserat continuum.

expression, when the path dependence is not considered: σij = σij (εij , θm). The
linearized form of the constitutive law around the a reference state of homogeneous
deformation reads:

σ̃ij = Lijklε̃kl +Amij θ̃m. (74)

Injecting in the balance equation we obtain:

Lijklũk,lj +Amij θ̃m,j = ρ¨̃ui. (75)

Each of the quantities θi obey in turn their own balance equations, which, with little
loss in generality we can assume to be of the advection-diffusion type:(

D(i) (um,n, θk) θi,j

)
,j
− (vjθi) , j +R(i) (um,n, θk) = θ̇i, (76)

where D(i) is the diffusion coefficient of the quantity θi, R(i) is the source or sink
term of the same quantity and vj is the velocity field controlling the advection. When
the diffusion coefficient is constant and the advective flow is incompressible, the
advection-diffusion equation simplifies to:

D(i)θi,jj − vjθi,j +R(i) (um,n, θk) = θ̇i. (77)

Expansion of the balance equation (76) leads to the following formulation:

D(i)θi,jj +
∂D(i)

∂um,n
θi,jum,nj +

∂D(i)

∂θk
θi,jθk,j +

−vjjθi − vjθi,j +R(i) (um,n, θk) = θ̇i, (78)
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where the dependencies of the functionD(i) (um,n, θk) have been omitted for the sake
of brevity. Linearization in turn yields:

D(i)θ̃i,jj +

+
∂D(i)

∂um,n
θi,j ũm,nj +

∂D(i)

∂um,n
um,nj θ̃i,j +

+
∂D(i)

∂θk
θi,j θ̃k,j +

∂D(i)

∂θk
θk,j θ̃i,j +

−vjj θ̃i − vj θ̃i,j +

+
∂R(i)

∂um,n
ũm,n +

∂R(i)

∂θk
θ̃k =

˙̃
θi, (79)

where the dependencies of the function R(i) (um,n, θk) have also been omitted. Col-
lecting the terms with the same perturbation components results in:

D(i)θ̃i,jj + P
(i)
j θ̃i,j − vjj θ̃i +Q

(i)
kj θ̃k,j +

∂R(i)

∂θk
θ̃k +

+S
(i)
mnj ũm,nj +

∂R(i)

∂um,n
ũm,n =

˙̃
θi. (80)

The stability of the system of equations consisting of the above system of equations
and equation (75) obviously depends on the values of the prefactors, which however
are not known at this point.

The corresponding linearized form for the balance equation (77) reads:

D(i)θ̃i,jj − vj θ̃i,j +
∂R(i)

∂um,n
ũm,n +

∂R(i)

∂θk
θ̃k =

˙̃
θi. (81)

The perturbation ũi is assumed to be of the form given in equation (7), while θ̃i is
assumed to be given by:

θ̃i = hie
st+iknjxj . (82)

Equations (75), (80) and (81) become:

−
(
k2njLijklnl + s2ρδik

)
gk + ikAkijnjhk = 0 (83)

[
−k2D(i)niδik + ik

(
P

(i)
j njδik +Q

(i)
kj nj

)
+
∂R(i)

∂θk
− (vjj + s) δik

]
hk +

+

(
−k2S

(i)
kjlnjnl + ik

∂R(i)

∂uk,j
nj

)
gk = 0 (84)

and [(
−k2D(i) − ikvjnj − s

)
δik +

∂R(i)

∂θk

]
hk + ik

∂R(i)

∂uk,j
njgk = 0. (85)
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respectively. Irrespectively of whether the simplified or the full form of the advection-
diffusion equation is used for the multiphysical processes, the system of equations
now takes the form: [

Cggik Cghil
Chgik Chhil

] [
gk
hl

]
=

[
0
0

]
, (86)

with
Cggik = −

(
k2Γik + s2ρδik

)
(87)

Cghik = ikAkijnj (88)

Chgik = −k2S
(i)
kjlnjnl + ik

∂R(i)

∂uk,j
nj (89)

Chhik = −k2D(i)niδik + ik
(
P

(i)
j njδik +Q

(i)
kj nj

)
+
∂R(i)

∂θk
− (vjj + s) δik, (90)

where the last two equations correspond to the full form of the advection-diffusion
equation.

Requiring the determinant of the system of equations to be equal to zero results in a
cubic equation in terms of s. The three roots clearly depend on the value of the various
multipliers, but some general remarks may be made without introducing numerical
values.

No coupling

When the coupling termsCghik andChgik are ignored, the possible roots are the two roots
resulting from the LSA of the stress balance without any regularization and an addi-
tional one from the advection-diffusion equation. When considering the advection-
diffusion equation with simplifications, it is clear that the real part of this root will be
negative as long as the diffusivity coefficient is positive. This is usually the case with
some exceptions, such as the consolidation equation when considering a collapsible
solid matrix.

One way coupling

Assuming only the physical process to have an effect on the stress balance equation
and itself not to be affected, one speaks of one way coupling. Then it is enough to
consider the solution of:

− k2Γ− s2ρ+ ikA = 0 (91)

with respect to s. The solution reads:

s = ±
√
−k2Γ + ikA
√
ρ

= ±
√
−4π2Γ + i2πAλ√

ρλ2
= ±

√
−Γ̂ + iÂλ

λ
, (92)
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where solutions with positive real part are principally of interest. It is clear from the
above equation that for λ→ 0 the real part of s goes to infinity, as for the case without
regularization.

Two way coupling

When the coupling terms are taken into account a cubic equation results with the
coupling terms contributing to the constant term with respect to s. To illustrate the
effect of the coupling, the problem is considered in one dimension for a single coupled
process for the simplified form of the advection-diffusion equation. For the sake of
simplicity the advective term and the influence of θ on the source term are ignored:

−
(
k2Γ + s2ρ

)
g + ikAh = 0, (93)

−
(
k2D(i) + s

)
h+ ikdRg = 0. (94)

The determinant then reads:(
k2Γ + s2ρ

) (
k2D(i) + s

)
+ k2AdR = 0. (95)

To investigate the effect of the coupling, we examine the influence of the various
terms. The equation to consider is a cubic polynomial:

ρs3 + ρk2D(i)s2 + k2Γs+ k4D(i)Γ + k2AdR = 0. (96)

where the values of the prefactors are not known, but their signs can be deducted with
the exception of the last term.

Table 1: Values used for the effect of multiphysical coupling on stability.

ρ D(i) Γ AdR
[kg/m3] [m2/s] [Pa] [Pa/(ms)]

1.0 0.1 -10−4 104

An attempt is made herein to visualize the effect of the different terms. For the graphs
that follow the values given in table 1 are used unless otherwise stated. In figure 16a
the effect of the coupling term on the mechanical problem is illustrated, when the latter
is stable. It is clear that positive coupling terms and negative coupling terms with a
high absolute value can lead to loss of stability, though the value of s when positive is
an increasing function of λ. In fact s is in all cases equal to zero when λ is equal to
zero.

For the values given in table 1 the effect of the diffusivity is illustrated in figure 16b.
It is clear that the maximum value of s corresponds to a nonzero value of λ, which
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Figure 16: s versus λ for different values of parameters.
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Figure 17: s versus λ for different values of α̂= and ∆̂.

increases with increasing diffusivity, leading one to expect a wider localized zone for
higher diffusivity values. On the other hand, changes in the inertia, in the form of
changes in the material density, have a very similar effect, changing both the magni-
tude and location of the maximum value of s, as shown in figure 17a. The effect on
the location of the maximum seems to be less pronounced than that of the diffusivity,
but this may well be linked to the values selected here.

In figure 17b the effect of the coupling term is illustrated. The most obvious result
is an increase in the maximum for increasing values of the coupling term. A detail
of this figure is shown in figure 18, illustrating the existence of a first positive branch
of s, which goes to infinity for zero λ. This area becomes smaller with increasing
values of the coupling term. This results from the mechanical instability and can be
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alleviated by employing a mechanical response accounting for the materials intrinsic
characteristic time or length.

On the whole it may be concluded that (two-way) multiphysical couplings can have
both a stabilizing and a destabilizing effect on problem, but in any case introduce a
finite width for the localization zone.

5.1 1D Example

The example considered in section 2.5 is revisited here, incorporating thermal cou-
pling. It is assumed that the material exhibits either thermal softening or hardening
and that the shearing process generates heat. The constitutive law in its linearized
form will read:

σ̃12 = 2G
h

1 + h
ε̃12 +AT̃

σ̃22 = Mε̃22 +BT̃ ,

(97)

where T stands for the temperature, M = K + 4G
3 is the p-wave elastic modulus and

h = 1
G
dτ0
dq > −1 is the hardening modulus.

On the other hand the temperature perturbations have to obey the equation:

∂T̃

∂t
= κ

∂2T̃

∂x2
+ 2βε̃12, (98)

where κ and β are assumed to be constants.

From the first balance equation and using the usual forms for the perturbations we
obtain

− (k2G
h

1 + h
+ s2ρ)g + ikAθ = 0⇒ (99)

− (k2v2
s

h

1 + h
+ s2)g + ik

A

ρ
θ = 0. (100)
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Correspondingly from the heat balance we obtain

ikβg −
(
k2κ+ s

)
θ = 0. (101)

For more than one non-trivial solutions to exist, the determinant of the system consist-
ing of equations (100) and (101) must be equal to zero:

s3 + k2κs2 + k2v2
s

h

1 + h
s+ k4v2

s

h

1 + h
κ+ k2Aβ

ρ
= 0⇒ (102)

ŝ3 + k̂2ŝ2 + k̂2 h

1 + h
ŝ+ k̂4 h

1 + h
+ k̂2Aβκ

ρv4
s

= 0, (103)

with

k̂ =
κ

vs
k, ŝ =

v2
s

κ
s. (104)

Cauchy∞

Coupled

Figure 19: Growth coefficient in function of the perturbation wavelength. While an
infinite value is observed for zero wavelength, a second maximum is present.

The growth coefficient as a function of the perturbation length is shown in figure 19. A
branch tending to infinity for λ→ 0 can be observed in a way similar to figure 18. As
already mentioned, this is a result of the lack of an internal length or a characteristic
time for the material.

6 Conclusions

This chapter focuses on providing the basic tools to graduate students for studying
strain localization in solids. The fundamental notions of loss of uniqueness, bifurca-
tion, stability, ill-posedness and mesh dependency are explained through simple exam-
ples. Without overlooking classical approaches in bifurcation analysis, we study strain
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localization by using the systematic mathematical framework that provides Lyapunov
stability. More specifically, we use the first Lyapunov method for exploring the con-
ditions for which equilibria of homogeneous deformation become unstable leading to
strain localization. In this method we determine the growth in time of perturbations of
arbitrary wavelength from the equilibrium (steady-)state. One-dimensional examples
are systematically given to help understanding keeping calculus to the minimum.

First we study strain localization in a classical Cauchy, Boltzmann continuum. We
limit our analysis in deformation bands, i.e. compaction, shear, dilation bands and
their combinations. This type of strain localization is often observed in several scales,
starting from laboratory experiments, such as shear band formation in a granular
material or compaction bands in porous rocks, to geological settings, such as faults
and landslides. We derive the conditions for strain localization for a general rate-
independent constitutive law. Under these assumptions we retrieve the acoustic tensor
and we study the dependence of the Lyapunov exponent (growth coefficient) in terms
of the perturbation wave length in order to determine the thickness of the localization
zone. We show that the perturbations that evolve faster in time (and dominate over
the others are characterized by asymptotically zero perturbation wave length and have
infinite Lyapunov exponent (singularity in time). This means that deformation bands
have zero thickness, which is in contrast with observations. This mathematical artifact
explains also the observed mesh-size dependency in finite element analyses of strain
localization, when rate-independent Cauchy continua are used.

The aforementioned pathology is partially remedied when rate-dependent Cauchy
continua are used. This viscous regularization introduces a characteristic time into
the system. Due to the presence of the aforementioned characteristic time, the Lya-
punov exponent remains finite (regularization in time). Moreover, when inertia effects
are negligible, it renders the system independent of the perturbation wave length. As
a result, the behavior of the system during strain localization (e.g. stress-strain pro-
file and deformation band thickness) is determined only by existing imperfections.
Such imperfections can be parasitic stresses or material defects. When inertia is not
negligible, the dominant perturbation is again the one characterized by the smallest
wavelength. Scale analysis shows that inertia terms are important when the perturba-
tion wave lengths are larger than a characteristic wavelength, which depends on the
material parameters. Three characteristic times are also identified showing when in-
ertia, viscosity or rate-independent behavior can be neglected. An one-dimensional
example using Perzyna viscoplasticity illustrates in a simple way most of the above
mathematical findings.

An alternative regularization technique, is the use of Micromorphic continua, such
as strain gradient and Cosserat continua, which enrich the continuum description
with characteristic lengths. The presence of these lengths remove mesh-size depen-
dency and determine the thickness of the localization zone, which is proportional to
the aforementioned internal lengths. Moreover, in the presence of inertia terms the
Lyapunov exponent if finite. Therefore, Micromorphic continua remedy both spatial
and time singularities, in the expense however of a more complex theory and com-
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plicated mathematical derivations. As an example we study strain localization in a
rate-independent Cosserat continuum. We use first a general constitutive law in three-
dimensions and then we give an one-dimensional example of a sheared infinite layer
in order to clarify the mathematical derivations and to illustrate how Cosserat contin-
uum regularizes the problem. Notice, that Cosserat continuum was successfully used
by Mühlhauss and Vardoulakis for predicting the shear band thickness of granular
materials [MV87].

The chapter closes with a section dedicated to multi-physics couplings and their effects
of strain localization. Thermo-Hydro-Chemo-Mechanical effects (THMC, among oth-
ers) introduce several length and time scales to the system and consequently regularize
in a physical manner the underlying mathematical problem. Our analysis is again gen-
eral, in three-dimensions and considers n-couplings. We show that two-way coupling
is necessary for regularization. An one-dimensional example of an infinite layer with
thermo-mechanical couplings is then presented for making clear the effects of the var-
ious physical mechanism. A rate-independent Cauchy material was used in this last
example.

Following this theoretical results and examples the following question is raised:
Which is the best way and theory for best describing strain localization in solids and
in particular in geomaterials?
The answer is always found by the modeler and depends on the physical/engineering
problem at hand. For instance, for modeling the stress-strain response and the thick-
ness of the principal slip zone of seismic faults (i.e. a narrow shear band formed during
seismic slip) a THMC Cosserat continuum was recently used providing realistic pre-
dictions [RSS18, RSS18, VSS13]. For studying the damage zone during gallery ex-
cavation in the context of radioactive waste disposal a double-scale, poro-mechanical,
strain-gradient model was employed [EBC+16].
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Appendix

A Classical bifurcation analysis and acoustic tensor

Consider a homogeneous, homogeneously deformed solid subjected to quasi-static in-
crements of deformation. Let’s assume that after an increment, a deformation band of
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thickness H is formed, which breaks the aforementioned homogeneity of the defor-
mation field (and consequently of the stress field) as shown in figure 20. The displace-
ment field remains continuous across the boundaries of the band, but its gradient does
not (different strains inside the band):

ti
-

ni
ti
+ Δui

H

Figure 20: Schematic representation of a deformation band and of the discontinuity of
the strain’s field.

J∆uiK = 0 and J∆ui,jK = ginj (105)

where J.K denotes discontinuity across the deformation band boundary (e.g. JαK =
α+ − α− ), ni is the orientation vector of the deformation band with i = 1, 2, 3 in the
three-dimensional space, ui the displacement field and ∆ denotes the increment of a
field. (.),i denotes derivation in terms of xi.

The jump of the shear stresses at the boundary of the shear band is not zero due to
acceleration (not in equilibrium). From the linear momentum balance we obtain:

J∆tiK = J∆σijKnj = −ρcJγiK (106)

where c is the velocity of a propagating discontinuity in direction ni such that JγiK =
J∆viK = −cgi, with vi the velocity field (see Hadamard conditions on propagating
discontinuities [Had03, LCBD09]). Consider the class of materials that for a small
increment ∆, the constitutive law can be written (linearized) as follows:

J∆σijK = Lijkl∆uk,l (107)

The tensor Lijkl can be continuous across the boundary of the band (JLijklK = 0)
or discontinuous in the sense that elastic unloading can occur outside the band, while
continued inelastic loading continues within the band. In the first case we say that
we have continuous bifurcation, while in the second discontinuous bifurcation. It is
shown that continuous bifurcation precedes discontinuous bifurcation [RR80]. Insert-
ing Eq.(108) into (106) and using (105) we get:(

njLijklnl − ρc2δik
)
gk = 0 (108)

where Γij = njLijklnl is the acoustic tensor. This equation coincides with equation
(8).
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