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Objectives

= Understand fundamental notions related to bifurcation theory;

= Perform a bifurcation analysis using the first Lyapunov method and derive
the conditions for strain localization under different constitutive assumptions
and continua;

= |dentify the dominant time and spatial scales in a class of problems;

= Draw qualitative conclusions regarding strain localization zone thickness and
mesh dependency without cumbersome numerical analyses;

= Understand the added-value of viscoplasticity and Micromorphic continua
such as the Cosserat and strain-gradient continua;

" |nvestigate the effect of multiphysics couplings on the localization of
deformations.



Packages

from knowledge import tensor_calculus, odes, stability
from character import perseverance
from problems import challenging
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Chapter update

http://coquake.eu/index.php/tools/alert 2019/
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http://coquake.eu/index.php/tools/alert_2019/

Examples of strain localization



Titanium after impact load

(P.Landau et al., Nature, 2016: “The genesis of adiabatic shear bands” )
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Fingering with acidizing fluid in chalk

0.04 cc/min

q

1.05 cc/min

Pore Volumes to Breakthrough

Acid Flux

| Stefanou, OCt19 (Stroggylis & Papamichos, 2019)



Silica sand particles

500 um
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(Cil & Alshibli, 2012)
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Biaxial tests

(Muhlhaus & Vardoulakis, 1987)
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Triaxial tests
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Zooming in...

intact zone

2 dg = 660 um : thickness of the shear band
as measured with the magnifying glass

2 dc=300 pm : cracked zone .
thickness of the (El Bied et al., 2004)

crushed zone
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Retaining walls

(Soltanbeigi et al., 2014)
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Subsidence

1'-0.q9~4533‘§ E:

(Vardoulakis et al., 2004)
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Subsidence

1'-0.q9~4533‘§ E:

(Vardoulakis et al., 2004)
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Fasten up!

= Kahoot! https://kahoot.com/

Kahoot!

Kahoot! Education Education * % % K 68379 &
El PEGI3 & Family Friendly
Offers in-app purchases

This app is compatible with some of your devices

Play, create, and host
awesome quizzes!
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Q1-5
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Compaction bands

Valley of Fire; Nevada, USAS 5/12/2015




Volcanoes

—_ Graben (normal) faults

_» Dipping direction of flanks
Dome (Uplifted ignimbrite
and early products)

[] Late eruptive products
(syn or post-tectonic)

Elevation in meters

Yenkahe :
T dome A

(a) Redondo dome in Valles caldera, NM US (Smith & Bailey, 1968)
(b) Yenkahe dome in Siwi caldera, IN (Brothelande et al., 2016)
(c) Valles caldera (Nielson & Hulen, 1984) Fault pattern idealization

(J.L. Got et al., JGR, 2019)
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Q6
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EQ faults

San Andreas Fault (USGS).,
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Definitions



Q7-8
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Loss of uniqueness

= existence of more than one (equilibrium or steady state) solutions

£

Bifurcation

£

Instability



A simple system for building understanding

-> Find all the equilibrium points (angles 8) of the system:




A simple system for building understanding

-> Find all the equilibrium points (angles 8) of the system:

1,0=3M, =Px-Ty
T=kx

X=1/sind

y=/cos6




Equilibrium diagram

P>l<
B, _83\
X
T 7T e
5 5 X ) 2 U
—1 5,

It is called also bifurcation diagram because at points B,, B,, B;...
the equilibrium diagram bifurcates!
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Loss of uniqueness

N

P*

0*
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Loss of uniqueness

Bifurcation point

r:;"‘“" W

26

H*



Population

10 . Blfurcatlorj Diagram .

08+

06

04

0z

(logistic map equation)

[134] 05 14 15 20 25 3a is 4.0
Growth Rate

It might be simple or complicated... but the idea is the same.
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How does the system decide where to go?

NG

P*

5

™o |



How does the system decide where to go?
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How does the system decide where to go?

P*
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stable
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The notion of (Lyapunov) stability

If we apply a small perturbation (the fly!) and the system
stays close or returns back to its equilibrium

|

Stable equilibrium

If we apply a small perturbation and the system
moves away from its equilibrium

l

|.Stefanou, Oct19
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Stability theory was formulated in 1892 by A.M.Lyapunov (1857-1917).

sssss

Time... is central even if we forget it or don’t consider it directly in
our analyses.
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Other stability postulates

* Second order work
* Hill’s stability
 Mandel’s stability
* Loss of ellipticity

* Loss of controllability



Other stability postulates

* Second order work
* Hill’s stability
 Mandel’s stability
* Loss of ellipticity

* Loss of controllability

Confused?

|.Stefanou, Oct19
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A couple of nice papers that clarify the applicability of many other
than Lyapunov stability postulates are:

Chambon, R., D. Caillerie, and G. Viggiani (2004), Loss of uniqueness and bifurcation vs
instability: some remarks, Rev. Francaise Génie Civ., 8(5—6), 517-535.
(ALERT School 2004)

Bigoni, D., and T. Hueckel (1991), Uniqueness and localization—I. Associative and non-
associative elastoplasticity, Int. J. Solids Struct., 28(2), 197-213.
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Well-posedness

1) A solution exists;
2) The solution is unique;

3) The solution’s behavior changes continuously with the initial
conditions

Jacques Hadamard. Sur les problemes aux dérivées partielles et leur
signification physique. Princeton University Bulletin, 49-52, 1902.
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Well-posedness

1) A solution exists;
2) The solution is unique;

3) The solution’s behavior changes continuously with the initial
conditions

Jacques Hadamard. Sur les problemes aux dérivées partielles et leur
signification physique. Princeton University Bulletin, 49-52, 1902.

We say that a problem is ill-posed when it is not well-posed.
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Study of strain localization



Concept

Is the homogeneous deformation of a solid, stable?

|.Stefanou, Oct19
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Instability of homogeneous deformation

Dynamic equations

of a Cauchy continuum: Oy = Pl

Equilibrium point: o =0

Let’s assume that we are in a state of homogeneous deformation
(everywhere the same and constant).

>>> \We want to investigate the possibility of non-homogeneous
deformations such as compaction, shear and dilation bands.



Example:

Successive equilibria
for increasing P:

%

Oij,

=0
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Considering the class of materials that o can be linearized
(hypothesis of equivalent material/linear comparison solid):

* ~ * it
o.=0.+4+0. =0. + L..U0
ij J 1] 1] ijkl =k | (Rice, 1976)

U. is a perturbation from the reference, homogeneous, equilibrium
configuration Uu;, such that: 0. =u. —u;

Replacing: LUy = ,Olji



LU = = pUi
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LUy = PU'

Separation of variables:

0; = X (x,)U,(t) — Lija Xy Uy (1) = pX U, (t)



LUy = PU'

Separation of variables:
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General solution in time:

U;(t) = gie®



LUy = PU'

Separation of variables:

0; = X (x,)U,(t) — Lija Xy Uy (1) = pX U, (t)

General solution in time:

U;(t) = gie®

Leading to: (Lz-jle,lj - stQ(Sik) gr =0



Deformation bands

Allowing plane wave solutions for

X that satisfy the BC’s

27

X(x)=¢ *"

Xp

|.Stefanou, Oct19
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As Y
|:Fik "‘P(gj é‘ik:|gk =0

Iy =n;Lyn (acoustic tensor)
as Y
If 'O(Z_j =something >0 = Re(s) >0 then
T

the homogeneous solution is unstable and the system will
bifurcate to a non-uniform solution (which we do not need to

find).
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The above condition is independent of the specific constitutive
law, provided that it is rate-independent.

|.Stefanou, Oct19
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Q10
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Q10

(Vardoulakis & Sulem, 1995)



Types of deformation bands

The type of the deformation band (compaction, shear or dilation
band) is determined by the product gn..

gn;=-1  pure compaction band
gn;=0 shear band

gn;=+1 pure dilation band



Example

|.Stefanou, Oct19
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left lower corner : compaction bands
right upper corner : dilation bands

in between : shear bands
B
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Mesh dependency
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Q11
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Mathematical explanation
2
p(ﬁj =sth>0 = s= 2z |sth
27T AN\ p

The perturbation that propagates the

fastest in the medium maximizes S and

therefore minimizes A.

Localization happens on a

mathematical plane (A—0).

|.Stefanou, Oct19 52



But this is not in accordance with
experiments, which show that
deformation bands have a finite
thickness, controllable by the grain size
(at least).

These experiments are very slow for the
material to show any rate dependent
sensitivity (Zheng et Zhao et al., 2013).
So it seems not to be related to viscous
effects, at least at 15t order.

The reason seems to be the absence of
internal lengths in Cauchy medium.

Higher order micromorphic continua, e.g.

Cosserat (microstructure) and THM
couplings are some approaches for
inserting more physics into the problem
leading to finite band thickness.

(Muhlhaus & Vardoulakis, 1987)

53



Exercise #1: Cauchy elasto-plastic layer

T

>
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Exercise #1: Cauchy elasto-plastic layer

T

. >
Elasto-plasticity:

F=012—-7170<0

|.Stefanou, Oct19
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Exercise #1: Cauchy elasto-plastic layer

Elasto-plasticity:

F=012—-7170<0

Small strains:

s .el .pl

T

>
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Exercise #1: Cauchy elasto-plastic layer

Elasto-plasticity:

F=012—-7170<0

Small strains:

s .el .pl

Linear elasticity:

O35 = Kezlkéij + 2G (E

T

>

— _Eklk’fsw)
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X1, X5 invariance and momentum balance:

o1 __ .0 . Ooaa -
8332 _pul’ 8332 —pu2




X1, X5 invariance and momentum balance:

o1 __ .0 . Ooaa -
8332 _pul’ 81’2 —PUQ




X1, X5 invariance and momentum balance:

Oodia . Ooaa -
6:132 _pu17 8.’)32 _puz

Steady-state:

J— *
012 = 019 = T0 ‘ 9oly _ . D95 _
0'22 — 0'52 f— O'O 8332 ? 8332

|.Stefanou, Oct19
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X1, X5 invariance and momentum balance:

Oodia . Ooaa -
8:13'2 _pu17 8:}32 _puz

Steady-state:

P *
012 = 012 = 170 ‘ 9o,

This state will be stable as long as any perturbations do not grow in time.

= 0; Ooyy _

8(132 o

|.Stefanou, Oct19
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X1, X5 invariance and momentum balance:

o1 __ .0 . Ooaa -
6:132 _pu17 8.’)32 _puz

Steady-state:
012 = 079 = T
0929 — 0'52 — 0

m—) 7

This state will be stable as long as any perturbations do not grow in time.

—N- 30;2 _
— 0’ Froaie

By perturbing the displacement fields: u; = u; + u;

|.Stefanou, Oct19
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Incremental law:
~ h ~
012 = 2G1—|——h812
029 = Méeos

where M = K + 2¢ s the p-wave elastic modulus,

dto

h = é T > —Lis the hardening modulus, with & = /%9112)

|.Stefanou, Oct19
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Incremental law:

~ h ~
012 = 2G1—|——h812

020 = Méeog

where M = K + 2¢ s the p-wave elastic modulus,

dto

h = é T > —Lis the hardening modulus, with & = 7%2)

)yp
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Incremental law:
~ h ~
012 = QG—1+h812
029 = Méeos

where M = K + 2¢ s the p-wave elastic modulus,

dto

h = é T > —Lis the hardening modulus, with & = 7%2)

T h<0 denotes softening.

))/P

|.Stefanou, Oct19
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Boundary conditions:

The perturbations u; have to fulfill the boundary conditions:

5’12 (ZL‘Q = :I:%) = 522 (ZL‘Q = i%) =0
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Boundary conditions:

The perturbations u; have to fulfill the boundary conditions:

5’12 (ZL‘Q = :I:%) = 522 (ZL‘Q = i%) =0

Direction of the shear band (imposed in this example): {n;} = {0,1,0}

. 0612 __ ,~ . 0022 __ -~
General solution of D1. = PULS  Ho. = Pu2
ﬁi — giest—l—lknjxj — g/,;GSt_'_lkm



Growth coefficient (Lyapunov exponent):

S = 1kup or
h

= +ikvg ) ——
S 1RV h—|—1

where VUp = 4/ % is the p-wave and v, = 1/% the shear velocity.



Q12

|.Stefanou, Oct19

59



Instability of homogeneous (reference) deformation (=>localization):

Re(s) >0



1.0 ;
t - 2{
0.5 ™.
10 20 30 40 39
—0.5}
~1.0t
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Summary of pathologies V&

~1.0t

2. Localization at zero wavelength/thickness (infinite wave number)

1. Infinite rate of growth
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Summary of pathologies NjE.

~1.0t

2. Localization at zero wavelength/thickness (infinite wave number)

1. Infinite rate of growth

Lack of characteristic time and length scale
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Constitutive behavior of solids



Qi3
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Elastoplasticity with
hardening

|.Stefanou, Oct19
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Elastoplasticity with
hardening

Elastoplasticity with
hardening and damage

|.Stefanou, Oct19 65



Example: Cyclic loading

.Stefanou, Oct19
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Ql4
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Viscous regularization
(characteristic time)



Materials whose mechanical response depends on the rate
of deformation are called viscous or rate-dependent:

O'ij = O'@'j (Eij,ér,;j, )
Linearized form:

0ij = Lijri€ri + Mijri€r

|.Stefanou, Oct19
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Replacing into the balance equation:
Tijj = Pl
yields:

Lijritu,; + Mt = pu;.

The above equation is linear and for deformation bands it
takes solutions of the form @; = g;e!*™i®i+st,



Finally:

or

njLgjimg +

|.Stefanou, Oct19
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Scaling

Let
t XL

TZT) Xk:fa

where T' is a characteristic time and L a characteristic length.

Then we obtain:

Ui A L\’ 5
S - S°04 =0,
G + GTS+ (fUSkT> S k| 9k

where v, is the shear-wave velocity, v, = , /%, §=sTand k = kL.

|.Stefanou, Oct19

72



Case #1: Negligible inertia [%+3—Ts+

Let F—Cf and % are terms of O(1) and . L of O(e),

A

¢ = ¢;x ~ O(1) leads to:

GTyisec
Tyise = Cik Aék |
vzkf% < 1 yields:
Tvisc > i = ¢ Aik > LA
vsk G 02T
\ < 27w, Cik ik — 3\

GL

=

73



So, when A <« \* = 2mv,T,,;,. inertia terms can be dropped:

ik Dix 5 9
( q -+ G T, + €5 k) Jk

|.Stefanou, Oct19 74



Assuming strain localization in an isotropic rock with:
G =~ 30GPa, ¢;;A;; = n ~ 20MPas and v, ~ 2000m/s

then \* ~ 8m, which is much larger than the localization thickness
of a deformation band (some millimeters or even smaller).

Therefore, for typical applications viscosity effects dominate over in-
ertial ones. In other words:

License to kill inertia!

(for typical localization problems)

|.Stefanou, Oct19 75



Case #2: Negligible viscosity

ik L2

Suppose -4 and

v2k2T?

L°_ ~ O(1) results:

v2k2T?

o S < 1yields:

Dir ik &
o

Tiner = LA — AL .
’US]{ 27TUS
Aik AL
i Tiner =
Cik G < 2TV
3 5 7 A'L
A > N = 2y, SRk

|.Stefanou, Oct19

are terms of O(1) and 2% of O(e).
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So for very large wave lengths A > \* viscosity terms can be dropped:

(

L'k
G

+ 325ik> gk

0

|.Stefanou, Oct19
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Case #3: Negligible rate- [% + Shs+ (4 é?aik] g =0
independency
We assume a new time-scale, such that 7,5, = ¢~ %7. This leads to:

@ ~ 52 — 0
C + GTSJFE (USkT) S$ 04k | Gk

2
Assuming e ¢ (-~ ) and 2 to be terms of O(1) and e*Lit of O(e)
GT G

fusch
I 1 _ _ - L2 — T'L'Qne'r' ia
withe < 1weobtainthata =1,7 =1T,,,. and e = 2heTs = Tg—t

Therefore we get:

G

el’; A A
( ko CikS + 825111%) gr =0 = (Ciks + 825ik) gr =0

and
T2
T’U&’i — ET’U@'SC = 2T Tinnefr < T’Uisc

Tvisc 78



Summarizing:

Depending on the material parameters and the characteristic time of
the phenomenon we study we can have:

o T'=Tier < Tyise (A€ X¥) inertia terms can be dropped:

I';
( i ‘|—Cz’k8> gr =0

G

Localization thinkness depends on the perturbation (no wave-
length selection) and the rate of growth s is finite

o T'=Tyise < Tiner (A > X\*) viscosity terms can be dropped:

I';
( Gk + 825%) gr =0

Localization thinkness is zero and the rate of growth s is infinite
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o T = Tygi < Tiner < Tyise rate-independent terms can be
dropped:
(Cik§ + 525¢k) g = 0

If the material is not rate-softening no localization happens

|.Stefanou, Oct19
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1D example

2 2
|:Fik+Aik3+P(%) 5ik] g =0 — F+A3+P(%) =0
r A A\,
— 4= — 0
G i G8+ (27?%) ’
20
— A=0.05
— A=0.10
15 — A=0.20
- A1
A_ A

G

» 10
\ e Perturbation growing fastest has A=0

Sis finite
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All perturbations propagate
with the same rate:
No wave-length selection

) See also:
I N és N A 2 Needleman, 1988
N Wang et al., 1997
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Exercise #2: Perzyna layer y'_-
Elasto-visco-plasticity: -
F=010—19

Deformation is split in elastic and viscoplastic parts:

gij = 5L+ &3P
According to Perzyna (1966):

é,vp_)-\c‘?F B F OF
v 80113‘ B nfo 80_@'_7"

where 7 is the viscosity and f, = 7.

From the definition of the plastic multiplier :

h .
E1g + 1o

i
1+ h 1+ h

F:’I]fo)\=>0'12:2G
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And finally:

5’12 = 2G

1

+h

€12 + 2

nfo -
(1+

(nfo)?

P2 T2 G0+ )

|.Stefanou, Oct19

s
~

£12 +

(nfo)?

2
G

2(1+ h)*

~

€12 — ...

84



And finally:

5’12 = 2G

1

h

+h

€12 + 2

nfo

(1+h)?

: 5 (n.fo)?

2T G+ h)

|.Stefanou, Oct19
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(nfo)?

2
G

2(1+ h)*

€12 — ...
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And finally:

. . nfo - (nfo)* = (nfo)® -
O12 = 2G1 n E12 + 2(1 n h)2512 — 2G(1 n h)3512 + 2G2(1 + h) €12 —
7]S
0.30 ‘f’o
025 V7~ Cauchy
020
0.15 ‘

Perzyna —=====-_______

A
0 20 40 60 80 100 77Vs

For \ > \* ~ 20 inertia is dominant.
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Regularization
with micromorphic continua
(characteristic length)



Ansatz

/ / ., I ol ot
Vi=V,+ XijTi + XijkT;Tp + XijkiTjTpXy + ...

~
7

(Germain, 1973, Mindlin, 1964 Eringen, 1999, ...) o



Strong form of micromorphic continua

Tij; + fi =0, by = Tijny
Vijk k + Sij + ?J)z'j =0, Hij = VijkTk

Viiki,l + Sijk + Yijr =0, Wijk = VijklTU



Q15
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Classification

/ / 7 I .7 /
Vi =Vi+ XijTj + XijeTiTy + XijhiT;0,T; + - ..

Continuum Media J

v
{ Classic or Cauchy ]

or Boltzmann

v

Micromorphic
(cf. Mindlin, Eringen, Germain)

v

1%t order Micromorphic

Micromorphic

Higher order I
(2nd, 3rd etc.)

v

Cosserat or Micropolar

(The particle is
considered rigid)

'

Indeterminate couple

stress
(The particle is restrained
to rotate as the continuum)

v

Second gradient
(The particle deforms
as the continuum)
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/ / 7 I
Vi = Vi + Xii %5 + Xija®iT, + Xiju ;2,2 + -

Classification

[ Continuum Media J
|
v v
Classic or Cauchy Micromorphic
or Boltzmann (cf. Mindlin, Eringen, Germain)
[ Higher order
1%t order Micromorphic Micromorphic |

(2nd, 3rd etc.)

Cosserat or Micropolar Second gradient

(The particle deforms

(The particle is
as the continuum)

considered rigid)

Indeterminate couple

stress
(The particle is restrained
to rotate as the continuum)
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o . Vi =Vi+ xi5%) + Xijr®iT), + XigujTT + . .
Classification

[ Continuum Media J
|
v v
Classic or Cauchy Micromorphic
or Boltzmann (cf. Mindlin, Eringen, Germain)
[ Higher order
1%t order Micromorphic Micromorphic |

(2nd, 3rd etc.)

Cosserat or Micropolar Second gradient

(The particle deforms

(The particle is
as the continuum)

considered rigid)

Indeterminate couple

stress
(The particle is restrained
to rotate as the continuum)
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Momentum balance

Tijg + Ji = pli; ti = Tijn;
Mijj — €ijkTik + ¢ = 107, i =myjn;
7;; IS the Cosserat stress tensor (non-symmetric)
m,; 1S the Cosserat moment (couple stress) tensor
u; and w{ are the Cosserat displacements and rotations
t; and u; denote boundary tractions
I is the microinertia

p is the density



Constitutive law, perturbation and linearization
Constitutive law: Tij = Tij (")/Z'j, Iﬁlij) and M5 = My ('Wja I{ij)

S C
Yij =W 5 T €W
C

Rij =Wij

We perturb the kinematic fields «; and w; as follows:
U; =u; —u) = U;estTrim
Qf =ws — W = QesttFin
Linearization of the constitutive law yields:
Tij =Clinrt + Cijul ki

~ MT MM
2y :Cijkl Ykl + Cz'jk:l Rkl



Eigenvalue problem
Replacing:

Uik +p (%)2 Oik Ak 2
Eik ik +1(2) i

where

T
Lir = 150 55m

1
Ajp = — knjeqlkczqu + nJO@jkl ng
1
= — . (MT o
Zik = 1 Cigra + 1k€wrc rkqt
w1 1 1
Hik — njc’q',jkl n; — kefr’nkc lrn nl + ]C2 e@lrclrnqenqk + 1k€zlrclrkqnq
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Condition for strain localization

Lik — pc?dix Ak B
Det ([ Zik I, — Ic®0i| ) 0

(Steinmann & Willam 1991, lordache &
Willam 1998, Rattez et al. 2018)
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Condition for strain localization

Lik — pc?dix Ak B
Det ([ Zik I, — Ic®0i| ) 0

(Steinmann & Willam 1991, lordache &
Willam 1998, Rattez et al. 2018)

Removing Cosserat effects:

Det (T — pcdix) =0
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Application: Muhlhaus-Vardoulakis plasticity model

Strain hardening elasto-plasticity for 3D Cosserat continuum:

F=r+uo, Q=r7+pfoc

o=0;13, —\/hlsus”+h s;S;i + (hsmym; +hmym, )/R*  {(h}

ij 1 ij iiMii {2/3 -1/6,2/3, 1/6}

{9;}={8/5,2/5,8/5,2/5)

£ =8 7' :\/gléi 6] + Q8] + (9KTK] + QR KR’ Miihlhaus, Vardoulakis (1988)
Rattez et al. (2018)

s;; and e;; are the deviatoric parts of the stress and strain tensors respectively,
E=e"+eP==—c+&P, &P =py°

1 1
. -el .p . .p -p . .
=7 P ==t +y0, =—(¢+uc
=7yt =Sty ¥ H( 4O )

H

where H = H (79) =h(o+ p) is the plastic hardening modulus (h =dx/dy ") which is related to the tangent modulus H.,, = 1+H/G

T
and it is either positive (hardening) or negative (softening) V\

)4
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Application: Muhlhaus-Vardoulakis plasticity model

Strain hardening elasto-plasticity for 3D Cosserat continuum:

F=r+uo, Q=r7+pfoc

o=0;13, —\/hlsus”+h s;S;i + (hsmym; +hmym, )/R*  {(h}

ij 1 ij iiMii {2/3 -1/6,2/3, 1/6}

{9;}={8/5,2/5,8/5,2/5)

£ =4 7}p:\/g1éi 6] + 0,88 + (95K K] + QKRR Muhlhaus, Vardoulakis (1988)

Rattez et al. (2018)
s;; and e;; are the deviatoric parts of the stress and strain tensors respectively,
E=e"+eP==—c+&P, &P =py°
1 1
y=7e+7p=6¢+7p, y“:ﬁ{r+ya)

H

where H = H (79) =h(o+ p) is the plastic hardening modulus (h =dx/dy ") which is related to the tangent modulus H.,, = 1+H/G

T
and it is either positive (hardening) or negative (softening) V\

)4



Exercise #3: Cosserat layer
Yield surface: I' = 712y — 70 < 0
Strains and curvatures spilit:

. . . nl
Fij = A5j +
Fij = K —I—Iipl

Incremental constitutive law:

. h
T(12) = 2G h’Y(m)
T12] = 2Gc’7[12]

Too = M %22

Mas = 4GR*F3o
where (. is the Cosserat shear modulus.
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The momentum balance equations become:

3T12 . 3722 i
e pul 57 pU2
Omsa

"c
+ To1 — T12 = Iw3.

(9215‘2
At steady state we have a Cauchy continuum under homogeneous
shear: 7(12) = 719y = To, T2z = T35 = 00, T12] = T[19 = 0 and

* 0 __

Perturbations: u; = u} + @;, w3 = w§* + &S

Replacing:
OTi2 = 0Ty =
R
Omsa
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Solution:
ﬂz :Uiest—l—ik::c

o':)c_: :Qiest—l—ikx
with k£ = 2T satisfying the BC’s:
G12 (2 = £2) = G9g (w2 = £ ) = mgs (22
Replacing and solving for s yields:

S = 1kfup

—+8) =0

/ (14 + 2H
s = tikvg \/?71 kQRQ h_
e 1

where I = 0 for simplicity.
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The system is unstable when Re[s] > 0:

h < 0 (softening) and 7, (1 +

or

1
A> Aoy = 27rR\/

1 h+1
k2R2)+_h -0
—I—h_ 1
h m

99



The system is unstable when Re[s] > 0:

o ) T >0

. 1 h—+1
h < 0 (softening) and 7, (1 + ) Z

or

)\>)\CT2’R’R\/1+h !
h m

0 20 40 60 80  100R 9



Cosserat vs Viscoplasticity

0 20 40\ 60 8  100R 0
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2_ nf 2 2 2_h 1.2
0

Vs 3G(1+h)2 k ) — U5k
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Multiphysics couplings
(characteristic time & length)



Exercise #3: Cauchy layer with 2-way (strong)
thermo-mechanical coupling

Linearized constitutive law:

519 = 2 S0 + AT
012 Gl n h€12 +
Heat equation (perturbed):
or T .
= Cth = + 27 €12,

ot Ox?

cin 1S the thermal diffusivity

7* the shear stress at the state of homogenous deformation.



From balance equation we obtain:

A
— (k%02 +5%)g+ik=0 =0

From heat equation:

ikt g — (kZCth - s) 0 =0

103



Summing up...

= Bifurcation analysis leads to conditions for strain localization under different
constitutive assumptions, continua and multiphysics couplings;

= Scaling helps to identify the dominant time and spatial scales;
= Deformation bands are a type of strain localization, commonly met

= Linear stability analysis gives the band’s thickness and mesh dependency
without cumbersome numerical analyses;

= We showed analytically why mesh dependency takes place;

= Regularization techniques restore physics and alleviate mathematical
artifacts, such as instantaneous localization on a mathematical plane.

= Viscosity - characteristic time;
=  Micromorphic continua = characteristic length;
=  Multiphysics = characteristic length & time.



Q1lé6-
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Diffuse bifurcation
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Thank you for your attention!
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