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Objectives

 Understand fundamental notions related to bifurcation theory;

 Perform a bifurcation analysis using the first Lyapunov method and derive 
the conditions for strain localization under different constitutive assumptions 
and continua;

 Identify the dominant time and spatial scales in a class of problems;

 Draw qualitative conclusions regarding strain localization zone thickness and 
mesh dependency without cumbersome numerical analyses;

 Understand the added-value of viscoplasticity and Micromorphic continua 
such as the Cosserat and strain-gradient continua;

 Investigate the effect of multiphysics couplings on the localization of 
deformations.
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Packages

from knowledge import tensor_calculus, odes, stability

from character import perseverance

from problems import challenging
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Chapter update

http://coquake.eu/index.php/tools/alert_2019/
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Examples of strain localization
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(P.Landau et al., Nature, 2016: “The genesis of adiabatic shear bands” )

Titanium after impact load
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(Stroggylis & Papamichos, 2019)

Fingering with acidizing fluid in chalk
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(Cil & Alshibli, 2012)

Silica sand particles

7I.Stefanou, Oct19



(Mühlhaus & Vardoulakis, 1987)

Biaxial tests
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Shear tests

(Desrues & Viggiani, 2004)
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(Tagliaferri et al., 2017)

Triaxial tests

PIV
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(El Bied et al., 2004)

Zooming in…

11I.Stefanou, Oct19



Retaining walls

PIV

(Soltanbeigi et al., 2014)
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Subsidence

(Vardoulakis et al., 2004)
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Subsidence

(Vardoulakis et al., 2004)
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Fasten up!

 Kahoot!                https://kahoot.com/
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Q1-5
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Compaction bands

Valley of Fire, Nevada, USA, 25/12/2015 16I.Stefanou, Oct19



Volcanoes

(a) Redondo dome in Valles caldera, NM US (Smith & Bailey, 1968)
(b) Yenkahe dome in Siwi caldera, IN (Brothelande et al., 2016)
(c) Valles caldera (Nielson & Hulen, 1984) Fault pattern idealization

(J.L. Got et al., JGR, 2019)
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Q6

18I.Stefanou, Oct19



San Andreas Fault (USGS)

EQ faults
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Definitions
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Q7-8
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Loss of uniqueness
= existence of more than one (equilibrium or steady state) solutions

≠

Bifurcation

≠

Instability
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A simple system for building understanding

-> Find all the equilibrium points (angles θ) of the system:
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Equilibrium diagram

It is called also bifurcation diagram because at points B1, B2, B3…
the equilibrium diagram bifurcates!
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Loss of uniqueness

Bifurcation point



It might be simple or complicated… but the idea is the same.

(logistic map equation)
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How does the system decide where to go?

θ0
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How does the system decide where to go?

? ?

θ0

28I.Stefanou, Oct19



29I.Stefanou, Oct19



1

29I.Stefanou, Oct19



1

2

29I.Stefanou, Oct19



1

2

3

29I.Stefanou, Oct19



1

2

3

29I.Stefanou, Oct19



1

2

3

stable

stable

unstable
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The notion of (Lyapunov) stability

If we apply a small perturbation (the fly!)  and the system 
stays close or returns back to its equilibrium

Stable equilibrium

If we apply a small perturbation and the system 
moves away from its equilibrium

Unstable equilibrium
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Stability theory was formulated in 1892 by A.M.Lyapunov (1857-1917).
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Time… is central even if we forget it or don’t consider it directly in 
our analyses.



Other stability postulates

• Second order work

• Hill’s stability

• Mandel’s stability

• Loss of ellipticity

• Loss of controllability

• …
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Other stability postulates

• Second order work

• Hill’s stability

• Mandel’s stability

• Loss of ellipticity

• Loss of controllability

• …

Confused?
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A couple of nice papers that clarify the applicability of many other 
than Lyapunov stability postulates are:

Chambon, R., D. Caillerie, and G. Viggiani (2004), Loss of uniqueness and bifurcation vs 
instability: some remarks, Rev. Française Génie Civ., 8(5–6), 517–535.
(ALERT School 2004)

Bigoni, D., and T. Hueckel (1991), Uniqueness and localization—I. Associative and non-
associative elastoplasticity, Int. J. Solids Struct., 28(2), 197–213.
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Q9

34

Mathematical
problem



Well-posedness

1) A solution exists;

2) The solution is unique;

3) The solution’s behavior changes continuously with the initial 
conditions

35

Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur 

signification physique. Princeton University Bulletin, 49-52, 1902.
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Well-posedness

1) A solution exists;

2) The solution is unique;

3) The solution’s behavior changes continuously with the initial 
conditions

35

Jacques Hadamard. Sur les problèmes aux dérivées partielles et leur 

signification physique. Princeton University Bulletin, 49-52, 1902.

We say that a problem is ill-posed when it is not well-posed.
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Study of strain localization
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Concept

Is the homogeneous deformation of a solid, stable?
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,ij j iu 

, 0ij j  

Dynamic equations
of a Cauchy continuum:

Equilibrium point:

Let’s assume that we are in a state of homogeneous deformation 
(everywhere the same and constant).

>>> We want to investigate the possibility of non-homogeneous 
deformations such as compaction, shear and dilation bands.
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Instability of homogeneous deformation
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Example:

, 0ij j  

P

Successive equilibria
for increasing P:
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,ij ij ij ij ijkl k lL u       

, iijkl k ljL u u
..

Considering the class of materials that σ can be linearized 
(hypothesis of equivalent material/linear comparison solid):

is a perturbation from the reference, homogeneous, equilibrium 
configuration ,  such that:

(Rice, 1976)

i i iu u u 
iu

Replacing:
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, iijkl k ljL u u
..
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, iijkl k ljL u u
..

,( ) ( ) ( ) ( )i p i ijkl lj k iu X x U t L X U t X U t  

Separation of variables:
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General solution in time:
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, iijkl k ljL u u
..

,( ) ( ) ( ) ( )i p i ijkl lj k iu X x U t L X U t X U t  

Separation of variables:

41

General solution in time:

Leading to:
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Allowing plane wave solutions for 

X that satisfy the BC’s 

2

( )
p pi n x

pX x e



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Deformation bands
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If then

the homogeneous solution  is unstable and the system will 
bifurcate to a non-uniform solution (which we do not need to 
find). 

2

0
2

s
something






 
  

 

43

ik j ijkl ln L n  (acoustic tensor)
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The above condition is independent of the specific constitutive 
law, provided that it is rate-independent.
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Q10
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Q10
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(Vardoulakis & Sulem, 1995)
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The type of the deformation band (compaction, shear or dilation 

band) is determined by the product gini. 

46

gini = -1       pure compaction band 

gini = 0        shear band

gini = +1     pure dilation band

Types of deformation bands
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Example
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Mesh dependency
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Q11
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The perturbation that propagates the 

fastest in the medium maximizes s and 

therefore minimizes λ.

Localization happens on a 

mathematical plane (λ→0).

2
2

0
2

sth
sth

s
s




 

 
    

 

2
p pst i n x

i iu U e






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Mathematical explanation



But this is not in accordance with 
experiments, which show that 
deformation bands have a finite 
thickness, controllable by the grain size 
(at least).

These experiments are very slow for the 
material to show any rate dependent 
sensitivity (Zheng et Zhao et al., 2013).
So it seems not to be related to viscous 
effects, at least at 1st order.

The reason seems to be the absence of 
internal lengths in Cauchy medium. 

Higher order micromorphic continua, e.g. 
Cosserat (microstructure) and THM 
couplings are some approaches for 
inserting more physics into the problem 
leading to finite band thickness.

(Mühlhaus & Vardoulakis, 1987)
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Exercise #1: Cauchy elasto-plastic layer
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Exercise #1: Cauchy elasto-plastic layer

Elasto-plasticity:
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Exercise #1: Cauchy elasto-plastic layer

Elasto-plasticity:

Small strains:
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Exercise #1: Cauchy elasto-plastic layer

Elasto-plasticity:

Small strains:

Linear elasticity:
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x1, x3 invariance and momentum balance:
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x1, x3 invariance and momentum balance:

Steady-state:
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x1, x3 invariance and momentum balance:

Steady-state:
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55

x1, x3 invariance and momentum balance:

Steady-state:

This state will be stable as long as any perturbations do not grow in time.
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55

x1, x3 invariance and momentum balance:

Steady-state:

This state will be stable as long as any perturbations do not grow in time.

By perturbing the displacement fields:
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Incremental law:

where                                 is the p-wave elastic modulus,

is the hardening modulus, with 
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Incremental law:

where                                 is the p-wave elastic modulus,

is the hardening modulus, with 

𝜏

𝛾𝑝
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56

Incremental law:

where                                 is the p-wave elastic modulus,

is the hardening modulus, with 

𝜏

𝛾𝑝

h<0 denotes softening.
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Boundary conditions:

The perturbations have to fulfill the boundary conditions:
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Boundary conditions:

Direction of the shear band (imposed in this example):

The perturbations have to fulfill the boundary conditions:
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Boundary conditions:

Direction of the shear band (imposed in this example):

The perturbations have to fulfill the boundary conditions:

General solution of                                                               :
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Boundary conditions:

Direction of the shear band (imposed in this example):

The perturbations have to fulfill the boundary conditions:

General solution of                                                               :
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Growth coefficient (Lyapunov exponent):

where                           is the p-wave and                         the shear velocity.
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Q12
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60

Instability of homogeneous (reference) deformation (=>localization):
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Summary of pathologies

1. Infinite rate of growth

2. Localization at zero wavelength/thickness (infinite wave number)
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62

Summary of pathologies

1. Infinite rate of growth

2. Localization at zero wavelength/thickness (infinite wave number)

Lack of characteristic time and length scale
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Constitutive behavior of solids
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Q13
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ε

σ

Elastoplasticity with 
hardening
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ε

σ

Elastoplasticity with 
hardening

ε

σ

Elastoplasticity with 
hardening and damage
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m m

p

p





hysteresis loopsecG

1

Example: Cyclic loading
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Q14
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Viscous regularization
(characteristic time)
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Scaling
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Case #1: Negligible inertia
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Case #2: Negligible viscosity
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Case #3: Negligible rate-
independency
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Summarizing:
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1D example
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• Perturbation growing fastest has λ=0

• s is finite
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All perturbations propagate 
with the same rate: 
No wave-length selection

See also:
Needleman, 1988
Wang et al., 1997
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Elasto-visco-plasticity:

Exercise #2: Perzyna layer

I.Stefanou, Oct19



84I.Stefanou, Oct19



84I.Stefanou, Oct19



84I.Stefanou, Oct19



Regularization
with micromorphic continua

(characteristic length)
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86
(Germain, 1973, Mindlin, 1964 Eringen, 1999, …)

Ansatz



Strong form of micromorphic continua
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Q15
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Classification
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Classification
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Classification
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Momentum balance
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Constitutive law, perturbation and linearization
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Eigenvalue problem
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Condition for strain localization

94

(Steinmann & Willam 1991, Iordache & 

Willam 1998, Rattez et al. 2018)
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Condition for strain localization

94

(Steinmann & Willam 1991, Iordache & 

Willam 1998, Rattez et al. 2018)
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Application: Mühlhaus-Vardoulakis plasticity model

95

Strain hardening elasto-plasticity for 3D Cosserat continuum: 
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Exercise #3: Cosserat layer
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Cosserat vs Viscoplasticity
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Multiphysics couplings
(characteristic time & length)
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Exercise #3: Cauchy layer with 2-way  (strong) 
thermo-mechanical coupling
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No couplings



Summing up…
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 Bifurcation analysis leads to conditions for strain localization under different 
constitutive assumptions, continua and multiphysics couplings;

 Scaling helps to identify the dominant time and spatial scales;

 Deformation bands are a type of strain localization, commonly met

 Linear stability analysis gives the band’s thickness and mesh dependency 
without cumbersome numerical analyses;

 We showed analytically why mesh dependency takes place;

 Regularization techniques restore physics and alleviate mathematical 
artifacts, such as instantaneous localization on a mathematical plane.

 Viscosity → characteristic time;

 Micromorphic continua → characteristic length;

 Multiphysics → characteristic length & time.



Q16-

105I.Stefanou, Oct19



Diffuse bifurcation
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Thank you for your attention!
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See chapter…
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